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1. Introduction
Ratimation of Noisy Telegraph Processes: In a certain class of linear dynamic Gaussian system,

Nonlinear filtering vs. Nonlinear Smoothing the opt _IO0thln9 estleator of the states May be

regarded as a two-filter smoother. See Wall, at .1 (1igl)

Abstract
for a oete discussion. Several author.. e.g. Rauch.
at al (1965) and Mehra and Dryson (1961) compared the

In the estimation problem of a two-state stationary perfonmnme of filters and amoothera in linear dynamic

Harkov process with Gaussian white noise added, the Optimal system. and found that in Certain cases smoothers may be

smoother is a two-filter smoother. In a special case, we more preferable even at the espense of ti deslay.
compare analytically the optimal nonlinear filter and In this paper, we consider the system of a telegraph

smoother and find that the latter is significantly better procesn in the presence of additive Gaussian white noise.

than the former when either the noise intensity or the and study the relationship between the optimal filtering

cte of Jusp of the atatee is to. and smoothing estimators of the states. To be specific,
define the signal process (u --. t ,) to be a
stationary two-state Narkov process such that

Pr{w
t 
- 1) pa l-Pr(u

t *-)

(1.1) Pr(wt
h - I I t * 1) * I - eh - o(h)

Kay words Nonlinear filtering, nonlinear smoothing, Pr (uth - -t ii
t - - 1 * I - v-h - o(h)

telegraph process

MIS 1990 Subjet classIficationi Primary 9I314 Secondary where pc - (I-p) v'. Lat the observed process
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(1.2) Zt  Us ds aWt , t C(o--)

, where (1 t ) isa standard Wiener process (U-i0
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rp - 1/2,
independent of fut} and a is a positive constant to

represent the intensity of the noise. - L -) )

In the next section, " show that the optimal Smoothing

estimator of t is a functionof the forard and backward 'L t .ls

filtering estimatore of u
t
. In Section 3. we compare

analytically the performance of the optimal nonlinear filter proof of Proposition 2.1

and smoother in a special case. Denote by f IT(
)  

(or f T (lut 5l)} the Radon-
|0 I0

2. Optimal onlinear Smoother as a TNo-Filter Smoother 0

In this section, we assumm, the process fzt) is Nikodym derivative of the measure on C(0,T) induced by

observed froe t - 0 on. Denote by 
"  

r 
t  

an "ot the , o (o "2 " ptectively)

left-sided, right-Sidedtand two-sided conditional expecta- with respect to the Wiener masu.re on COT The

t iof. of P *t .e. (W0t'Z), E(t l I) and E(utl0
I
T)

,  existence of the derivatives is a consequence of iranos

respectively, where T is a fixed time span (possibly -), Theorem (see Il, Theorem 7.2). Let b - I or -1. Using

O<~~~~ ~~~ t<T andu ) an TEZ_ T
O<t.. Z,_{I; S a u(t) and Z Z5-z. t'oT)._ the independence of and t qiven t"

Wonhee (1965) showed that atL isfies. 
a Stochastic

Tr b T f utTb)/ f
(
J

)o

differential equation. We can easily see that Ut melt Pr(0 b l)f I(To0Ut-b)Prit-b)/f

satisfy a reversed-time stochastic differential equation

of the same type. Now, the following proposition tells

s that the sothing estimate tof . can be easily Pr(tb)

coqooted f. knowing ;I' and ^t.
- f tllt-b){ T u -blPr(ut-

b
)

Proposition 2.1 1O0 _T t-t " (t
0 t t

5 -Lta 
t

(lost) (lt)-2P(l*t;)

i.. tanh - tenh

-t -an h Soto



a --. I Pr(u-- Pr(ut--1)
Pr.- I -Prt-Iz.n't -t It should be noted that MSE(qt) is constant for

Prfamt-lIjZoen) t tI-.-) but T L Ll"F-it)lIropt) ) bu MSZ(q") MSE~q, - Sfiq,L) for t'l _ v,

for when t 'o

ineZ() t t c.3.31 LlqLlut) . L(X[Wtlt,1mSt.-tjjWt)

Sl oIi0z
0 

0_t 0,0

it i i P

t t where L(Y) is the distribution of random variable Y

Observing 2 tanh
" 1 

x - lo4;(l+x)(I-x)
- 1 , 

we complete the and (IIX) is the conditional distribution of Y qiven

proof. n a-

3. Comparison etwen Filtering and Smoothing hIn the following, we only consider t 0.

We can readily modify the proof of Proposition 2.1 to
in this section , we study the Performance of the :o

Optial nonlinear filter and smoother. In order to derive
propoeition 3.1I

same analytic results, w consider stifmates based on an
L S i 5

infinite tim span and p - 1/2. Denote by q' qt and qt - q

qt th. left-sided, riqht-aided and tw-oided conditional t
expectations of it, I.e. R(tlz.), Z(tl 21 and

(l(PIt I. respDctively. Define ProPosition 3.2 Itvonham (1965))

(A)

13.1) NSIqt) r E t E 9(q LU)I

Pr(qL Iqqrdq It-tl)zcly (liql 1l-q l
2
esp1-2Y (I-q

2
)-'q

and 
where

(3.2) 
3

Sqt) - i R(qt-Vt)2

"- ql -
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Also, gt is independent of qt given wt. Therefore,

C(Y) - [ f1/2-lU-I/2e-21Zdz
-
1 by applyinq Propositions 3.1 and 3.2 (A, e can readily

1 derive the formula for MSE(qt). The comptation of its

snd asymptotic behavior is given In the Appendix. o

We my also colute the NSZ for the Wiener filte.inq

.2, estisite of it and the beet linear estimte based on

(B)

MSEW NSE for the Wiener filterinq estimte of w t

MSE(qL") 7. :/2(t1) 1/2" 2d /2 (Z.l)I/2e
2
,Z d.

0 (3.4) Z v[(l "o 1)1/2_1 ]

022
1 2 

oo 
1 

1 0*

I (4)1 , 02, /2-( . o1,112 (Y o*

I _ (d4 ,
-  

. O(Y,-21 -1

eropositionl 3.3

i ]* MS L(. ME for the best linear estimate of wt
MS~lq- " 11 1 lX I bIx 1xl2ly1 l

"  
basd on Z%

•exp( 2 [ (lz
- 1  

I(1-y2)
"
} J)dxdy(.5 

11 1/

jf *11 2 o 1 (Y 0*)j,2) ( I -. ,2) (
Proof of Propositiom 3.3

Since (u
t
) is time reversible. L(qth.t)  L(q Lat. Nw me are ready to noWare the performence of the

It



various estiaates. See Table 3.1 forthe sumary of the

asymptotic results on their USE. - Vloq y o(y log . C* *01)

Remark 1. As y.0+, the linear estimates are not ( 36)

efficient. It seems that in non-Gaussian systems linear + - o f ""))

estimatee are rather inflexible and therefore can not

perform eell.

Resirk 2; As y- 0 * the optimal smoother is more (i Based on1%

efficient than the optimal filter by a factor -109 Y

This factor is about 6.9 when y - 0.002 1e0.9 -, - 0.1). An optimal decision 4 is

Therefore, when either the noise intensity or the rate of

3wmp of the states is low, the optimal smoother is signif- d(Z" ) - I 1ff Pr(N
0
-112_)

Lcantly better than the optimal filter.

Remark 3: In finite-state processes, error p.obability is The error probability is

also an interesting criterion. In the follo..ing, we

present the error probabilities for several optimal e - c(Y)2 e dx(l-y Cl-v

decision procedures. We consider decisions on whether 0-

is I or -1.

Mi) Based on Z 0

An optimal deci'on dL '0: * (Y)
2 
11C (y)-ly -.- 2y m

dC%
0  

- 1ff 0 12

The error probability is 
0

L  
C( ) (l q ) ( l-q 

2 2  
(lY ql )C dq 1 e-2t

V 
0 }

I - . log • 0(v) 0)

II TO 

~ ~n v
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AppendiZ (A. 2) J J ) Ji-

Proof of the A~y~ptotiC ExenionS for MSE(q) in

Proposition 3.3

In the folloninq, c(y) is abbreviated to c. We

use the notation A -B( - 10) to "A. ,i, -

C, 0*)

(I The -a90 of 1 '0*. Here E is a small positive number.

- 2"1/2 1 -/2 0
-2yz4 2  

.. p~----- )a2 d

- . /-(u_,,-1/2 -2udi

f loIlY exy (
1 - :i 7 8 aoII-i -1 C~ nY _ dd

y 
1  T dv I2 v] (1y) - x NO

- r 1/ lv 2n_, - -[l " 7-)'

I II [,vi -yuil

(A 1[M apl T - -7 2

" 1 1 1)2 exp ( )dxdy

&VINOW

.- ll i T' ( ion, (iY 1- i-



IA. 3) floqy) 2
didy

ff r dxdy y*y -- (dy

1 l7 rI.)f-I-) +

~ome* i~e -r [-(_4s *0~ + J drd.

(A.4)
(u-l-x, v - l+Y)

(:2 -2yp*~4)d Therefore, froms (A.U. (A.2), (A.3), (A.)

--------

q~ 
-- G

2
v (

~J .....L... p *m(-.,..- + vx... . dv fix) The asi. of

- f 1/~-/ *-2y: d.

f 2 -2 dd
y -,+-T *u my(yip (ri Y- --,,T T l /2z-1/2 -2ytd ssal giie

(U- yin. v - y(
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(A.5) -2y [4) i/2i/ 2  2 27/2i1/2 3/2 * (-/ oi0]- X h-2 * i
X)2 - Z 0 - , $- /2 ( -; 2 d. 2. 2 )

2. j* (2 ..)12 J d2 x i20s) -.

*xy 
(A.7)iy) 

~ 1x 
2. -21(2-312,112, -112 -32 -9/2, 112,-3/2

(I-N-Y-XY~~- *-2 72 +- *2+OX Y 2X( 1 - 2/2

5x 2 * Cs) dx

-AC + 12! y xd 
.

(A.6)) dj 2[fx .~ sxj) 2x 2yC.V 1 25/ 8)a

Ix 0



(.) 2 -2, (-7/2w 1/2 -3/2 32

dxdy

(A9 -4Y(2-11-1 2- 3 -2 Y2)

So. f~om (A.5) &nd (A.9),

REq) 2-1-y-1 -3,Y2 + o(I-

This completom thO Proof.
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